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Summary. Generalized additive models (GAMs) have been widely used. While the procedure
for fitting a generalized additive model to independent data has been well established, not as
much work has been done when the data are correlated. The currently available methods are
not completely satisfactory in practice. A new approach is proposed to fit generalized additive
models with spatio-temporal data via the penalized likelihood approach which estimates the
smooth functions and covariance parameters by iteratively maximizing the penalized log like-
lihood. Both maximum likelihood (ML) and restricted maximum likelihood (REML) estimation
schemes are developed. Also, conditions for asymptotic posterior normality are investigated
for the case of separable spatio-temporal data with fixed spatial covariate structure and no
temporal dependence. We propose a new model selection criterion for comparing models with
and without spatial correlation. The proposed methods are illustrated by both simulation study
and real data analysis.

Keywords: GAM, Matérn class, Maximum likelihood (ML), Penalized likelihood, Restricted
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1. Introduction

In spatial statistics, modeling both the mean structure and the covariance structure is often
of interest. For modeling the mean structure, a standard linear or non-linear model is
usually sufficient, but when the relationship between the variables is complex and can not
be easily modeled by specific linear or non-linear functions, a generalized additive model
(GAM) will be a natural choice.

Generalized additive models were first proposed by Hastie and Tibshirani (1986, 1990).
These models assume that the mean of the response variable depends on an additive pre-
dictor through a link function. Like generalized linear models (GLMs), generalized additive
models permit the response probability distribution to be any member of the exponential
family of distributions. The only difference between GAMs and GLMs is that the GAMs al-
low for unknown smooth functions in the linear predictor. In general, a generalized additive
model has a structure like

g(µi) = X∗
i β +

m∑

j=1

fj(xij)
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where Yi ∼ some exponential family distribution; µi = E(Yi); X∗
i is the ith row of the

model matrix for the strictly parametric model components; fj are smooth functions of the
covariates xj .

The strength of GAMs is their ability to deal with highly non-linear and non-monotonic
relationships between the response and the set of explanatory variables. Due to the high
flexibility in model specification, GAMs have been widely used, see, for example, Hastie
and Tibshirani (1995), Lehmann (1998), Abe (1999), Frescino et al. (2001), Guisan et al.
(2002) and Dominici et al. (2002).

For methodologies of fitting a generalized model, there exist a large literature on gen-
eralized additive models and nonparametric regression models with independent data us-
ing spline methods (Wahba, 1990; Green and Silverman, 1994; Gu, 2002; Wood, 2006).
However, only limited work has been done with correlated data. Several researchers have
restricted their attention to longitudinal data with normally distributed responses and have
incorporated a nonparametric time function in linear mixed models (Zeger and Diggle, 1994;
Zhang et al., 1998). For more general cases, Lin and Zhang (1999) proposed generalized
additive mixed models (GAMMs) which is a generalization of the generalized linear mixed
models (GLMMs). As they mentioned in the discussion, there are bias problems especially
when the random effects are correlated. Wood (2006) included GAMMs in his R package
mgcv based on Lin and Zhang’s approach. He pointed out that GAMM fitting is not as
numerically stable as GAM and will occasionally fail, especially when explicitly modelling
correlation in the data, probably because of the confounding between correlation and non-
linearity. Fahrmeir and Lang (2001) and Fahrmeir et al. (2004) proposed a fully Bayesian
approach. Since all inferences are based on MCMC simulations, the computational cost of
the Bayesian approach may be high, especially when the sample size is large. Therefore, its
practical feasibility deserves careful consideration.

We propose an alternative and hopefully more stable approach to fit generalized additive
models with correlated data via the penalized likelihood approach that avoids the complexity
of the mixed model approach and the high computation cost of the Bayesian approach.

Although the proposed approach does not assume any specific correlation structure,
particular attention will be given to spatial correlation defined by the Matérn class. The
Matérn class is a rich family of autocovariance functions taking the general form

K(h) = σ2 (h/φ)ν

2ν−1Γ(ν)
Kν(h/φ),

where h is the (geodesic) distance between two data points, σ2 is the variance parameter,
ν is the smoothness parameter, φ is the range parameter, and Kν(x) is the modified Bessel
function of the second kind with order ν (Abramowitz and Stegun, 1972). The Matérn class
includes the exponential correlation function when ν = 0.5 and the Gaussian correlation
function as a limiting case when ν →∞. The smoothness parameter controls the smooth-
ness of the process, which depends on the variogram’s behavior near the origin, i.e., the
correlation function’s behavior when observations are separated by small distances. Stein
(1999) strongly recommended the Matérn class for modeling spatial correlation because of
its ability to specify the smoothness of the random field. In recent years, the Matérn class
has received more attention in the literature, see, for example, Williams et al. (2000), Diggle
et al. (2002), Zhang (2004), and Zhu and Zhang (2006).

Some of the Matérn model parameters are not consistently estimable under fixed do-
main asymptotics (see Ying, 1991; Stein, 1999; Zhang, 2004). What if we have repeated
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measurements at the sampling locations? To answer this question, situations for the spatio-
temporal case, where the spatial design is assumed to be fixed with temporally independent
repeated measurements and the spatial correlation structure does not change over time, are
investigated via studying the conditions for asymptotic posterior normality. Data satisfying
the aforementioned conditions are increasingly collected in science, for example, large-scale
annual fisheries monitoring data. Our theoretical investigation exploits the fact that pe-
nalized likelihood estimation can be given a Bayesian interpretation. Asymptotic posterior
normality has been an important topic in Bayesian inference. Walker (1969) gave a rigorous
proof of asymptotic posterior normality under certain regularity conditions in the i.i.d. case.
After that, a number of investigators extended Walker’s results to cover general stochas-
tic processes, see, for example, Heyde and Johnstone (1979), Chen (1985), Sweeting and
Adekola (1987), and Sweeting (1992). Their work is quite general. We follow the results of
Sweeting (1992) to study the conditions under which asymptotic posterior normality holds
in the spatio-temporal case. As temporal independence is a strong assumption of our anal-
ysis, a model diagnosis method is developed to check if the assumption of independence
across time holds for the spatio-temporal data.

The rest of the paper is organized as follows. In Section 2, we introduce the GAM with
spatially correlated but temporally independent data. A detailed description of our new
approach for fitting GAMs with correlated data is given in Section 3. In Section 4, conditions
for asymptotic posterior normality under the spatio-temporal case are investigated. A
simulation study on the performance of the new approach is given in Section 5, and a model
diagnosis method for checking the assumptions of independence across time is developed in
Section 6. Also, we propose a model selection criterion based on the Bayesian framework
in Section 7 to compare different candidate models. Finally, the proposed methodology is
applied to modeling the distribution of the pollock fish egg in the Gulf of Alaska.

2. Spatio-temporal Model

Consider the GAM,

Yt = f1(x1t) + f2(x2t) + · · ·+ fm(xmt) + et, , t = 1, 2, 3, · · · , T (1)

where Yt ∈ Rn0 with n0 the number of observations for each time period t; xjt are the
values of covariates xj at time t; fj are unknown smooth functions; et ∼ N(0, Σt(θ))
with Σt(θ) defined by some spatial covariogram function K. We assume that the temporal
correlation and the spatial correlation are separable, i.e., the covariance of observations at
time t1, location s1 and time t2, location s2 can be written as

Cov(Yt1(s1), Yt2(s2)) = Cov(et1(s1), et2(s2)) = τ(|t1 − t2|)K(|s1 − s2|)

where τ is a temporal autocorrelation function (the temporal variance has been absorbed
into K(|s1 − s2|). In other words, the temporal correlation scheme is independent of the
spatial correlation scheme.

Throughout this paper, we focus on a special case of the above model, in which the
spatial design does not change over time, i.e., Σt(θ) = Σθ for all t, and the observations are
temporally independent, i.e., τ(|t1 − t2|) = 1 if t1 = t2 and 0 otherwise. Thus the random
vectors et1 and et2 are independent for t1 6= t2. This is a strong assumption; we will study
the issue of checking the validity of this assumption later on.
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3. Parameter Estimation

In this section, we describe our new fitting approach using a special case of Model (1) where
t = m = 1, i.e., there are only one time period and one smooth function. The approach can
be easily adapted for multiple smooth functions and multiple time-period data.

3.1. Model
Suppose the model is

Yi = f(xi) + εi,

where xi is a d-vector of the covariates; f is a unknown smooth function; and the errors
ε have a multivariate normal distribution with mean 0 and covariance matrix Σθ where θ
are the covariance parameters.

Consider the problem of estimating the covariance parameters θ and the smooth func-

tion f , based on data Y = (Y1, Y2, . . . , Yn)′, x =




x
′
1

. . .

x
′
n


. Similar to the GAMs with

uncorrelated errors, this goal can be achieved by maximizing the penalized log likelihood

`P = −n

2
log(2π)− 1

2
log |Σθ| − 1

2
(Y − f(x))′Σ−1

θ (Y − f(x))− 1
2
λJ(f), (2)

where f(x) = [f(xi), i = 1, . . . , n]′, λ is the smoothing parameter controlling the tradeoff
between the model fit and the smoothness of the regression function, and J is a wiggliness
penalty functional which is defined as

J(f) =
∫

[f
′′
(x)]2dx for d = 1

and

J(f) =
∫
· · ·

∫ ∑
v1+···+vd=m

m!
v1! · · · vd!

(
∂mf

∂xv1
1 · · ·xvd

d

)2

dx1 · · · dxd for d > 1,

with 2m > d.
It is hard to maximize `P with respect to θ and f simultaneously. Therefore, we devel-

oped an iterative algorithm which maximizes the penalized log likelihood alternatively with
respect to the covariance parameters and the smooth functions.

3.2. Penalized Maximum Likelihood Estimation
The algorithm for covariance parameter estimation is as follows:
Step 1 Start with some initial value of θ, say θ(0). Treat θ as known and try to select the
smoothing parameter λ and estimate the smooth function f .

For fixed θ, maximizing (2) becomes

max
f(x)

{
−1

2
(Y − f(x))′Σ−1

θ (Y − f(x))− 1
2
λJ(f)

}
.

It can be shown that for fixed θ the solution of f to the above maximization problem is
a natural cubic spline if d = 1 and a natural thin-plate spline if d > 1. Thus f(x) can
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be represented as a linear function of the spline basis, i.e. f(x) = Xβ for some unknown
parameters β and X is the design matrix of the spline basis function. Moreover, J(f) =
β′Sβ for some known symmetric matrix S, see Wood (2006). Hence the maximization
problem is equivalent to the penalized weighted least squares problem

min
β

{
||Σ−1/2

θ (Y −Xβ)||2 + λβ
′
Sβ

}

or

min
β

{
||Ỹ − X̃β||2 + λβ

′
Sβ

}
(3)

where Σ−1/2
θ is any square root matrix of Σ−1

θ such that (Σ−1/2
θ )′Σ−1/2

θ = Σ−1
θ , Ỹ =

Σ−1/2
θ Yand X̃ = Σ−1/2

θ X.
The smoothing parameter can be estimated by a number of criteria, e.g. CV or GCV.

Here, we shall estimate λ by minimizing the GCV as it can be readily implemented by using
the mgcv library (Wood, 2006) in the statistical platform R. In the case that Σθ = I, the
identity matrix, the GCV(λ) is defined by the formula:

V =
n||Y −AY||2
[n− tr(A)]2

,

where A = X(X′X + λS)−1X′.
Thus for the case in (3), λ is selected by minimizing the GVC score

V =
n||Ỹ − ÃỸ||2
[n− tr(Ã)]2

,

where Ã = X̃(X̃′X̃ + λS)−1X̃′.

With known θ and λ, the minimization problem (3) admits a unique solution, i.e. β̂ =
(X̃′X̃ + λS)−1X̃′Ỹ = (XΣ−1

θ X + λS)−1X′Σ−1
θ Y, if XΣ−1

θ X + λS is of full rank.

Denote the selected λ and the corresponding estimated β as λ(1) and β(1) respectively.
Step 2 Let λ = λ(1) and β = β(1), and try to find a new estimate of θ.

With λ and β fixed, maximizing (2) becomes

max
θ

{
−1

2
(Y −Xβ)′Σ−1

θ (Y −Xβ)− 1
2

log |Σθ|
}

.

Clearly the solution is the MLE of θ with β(1) plugged in. Denote the new estimate of θ
as θ(1).

Step 3 Stop if ||θ
(1)−θ(0)||
||θ(0)||

< 10−4. Otherwise, let θ(0) = θ(1) and repeat Steps 1–3.

Conditional on the covariates, the standard errors and confidence intervals of θ̂ can be
obtained based on the information matrix or the observed information matrix from the log



6 X. Fang and K.-S. Chan

likelihood in Step 2.

`P = −1
2
(Y −Xβ)′Σ−1

θ (Y −Xβ)− 1
2

log |Σθ| − 1
2
λβ′Sβ

∂`P

∂β′
= (Y −Xβ)′Σ−1

θ X− λβ′S

∂2`P

∂β∂β′
= −X′Σ−1

θ X− λS

∂2`P

∂θ∂β′
=

∂

∂θ
(Y −Xβ)′Σ−1

θ X

Since E ∂2`P

∂θ∂β′
= 0, the Fisher information matrix equals

I =

(
X′Σ−1

θ X + λS 0
0 −E ∂2`P

∂θ∂θ′

)
.

Thus under some suitable regularity conditions, it can be expected that,

β̂
·∼ N

(
β, (X′Σ−1

θ X + λS)−1
)

θ̂
·∼ N

(
θ, (−E

∂2`P

∂θ∂θ′
)−1

)
,

which will be revisited later.

3.3. Penalized Restricted Maximum Likelihood Estimation
It is well known that the maximum likelihood estimation tends to underestimate the co-
variance parameters due to the loss of degrees of freedom in estimating the mean structure
parameter, while the restricted maximum likelihood (REML) estimation is less biased (Cor-
beil and Searle, 1976). Recall that with unpenalized likelihood, the restricted likelihood is
the average of the likelihood over all possible values of regression coefficients β, i.e.,

LR(θ) =
∫

L(β,θ)dβ,

where β is given a non-informative prior.
But for penalized likelihood, we are actually imposing some prior beliefs about the likely

characteristics of the correct model, which means we need to specify a prior distribution on
β. Specifically let the prior for β, which is generally improper, be

fβ(β) ∝ exp{−1
2
β′λSβ}.

This prior is appropriate since it makes explicit the fact that we believe smooth models
to be more likely than wiggly ones, but it gives equal probability density to all models of
equal smoothness (Wood, 2006). In fact, the penalty term also implies that this prior is
appropriate.
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With the prior given previously, the restricted penalized likelihood function can be shown
to equal

LR(θ|Y) =
∫

f(Y|β, θ)fβ(β)dβ

= const.
1√

(2π)n|Σθ|

∫
exp{−1

2
[(Y −Xβ)′Σ−1

θ (Y −Xβ) + β′λSβ]}dβ

= const.
1√

(2π)n|Σθ|
exp{−1

2
(Ỹ − X̃β̂)′(Ỹ − X̃β̂)}

√
(2π)p

|X̃′X̃|

where Ỹ =
(

Σ−1/2
θ Y
0

)
, X̃ =

(
Σ−1/2

θ X
B

)
, β̂ = (X̃′X̃)−1X̃′Ỹ, p = dim(β), and B is

any matrix such that B′B = λS. After some algebra, the penalized restricted log-likelihood
function can be expressed as

`R(θ|Y) = log LR(θ|Y)

= const.− 1
2

log(|Σθ|)− 1
2

log(|X′Σ−1
θ X + λS|)

−1
2
Y′

[
Σ−1

θ −Σ−1
θ X

(
X′(Σθ)−1X + λS

)−1
X′Σ−1

θ

]
Y.

Penalized restricted likelihood estimation can then be carried out iteratively with a scheme
similar to that of the ML estimation, except that Step 2 is modified as follows: With fixed
λ, maximizing `R with respect to θ gives the REML estimate θ(1). Steps 1 and 3 are exactly
the same as described previously. Also, the standard errors and confidence intervals of θ can
be obtained based on the information matrix from the penalized restricted log likelihood.

3.4. Inference on Smooth Functions
Once the covariance parameters are estimated, we can repeat Step 1 to select the smoothing
parameter and estimate β. Then the fitted smooth function ĝ is given by Xβ̂.

As discussed before, with the smoothing parameter fixed the prior distribution of β is

fβ(β) ∝ exp{−1
2
β′λSβ}.

Based on the model specification, the conditional distribution of Y given β is

fY |β(y) ∝ exp{−1
2
(y −Xβ)′Σ−1

θ (y −Xβ)}.

So by the Bayes rule, the posterior distribution of β is

fβ|Y (β) ∝ exp{−1
2
(β′(X′Σ−1

θ X + λS)β − 2β′X′Σ−1
θ Y + Y′Σ−1

θ Y)}

∝ e−
1
2 [(β−(X′Σ−1

θ X+λS)−1X′Σ−1
θ Y)′(X′Σ−1

θ X+λS)(β−(X′Σ−1
θ X+λS)−1X′Σ−1

θ Y)].

Therefore,

β|Y ∼ N
(
(X′Σ−1

θ X + λS)−1X′Σ−1
θ Y, (X′Σ−1

θ X + λS)−1
)
,
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i.e., β̂ = (X′Σ−1
θ X + λS)−1X′Σ−1

θ Y and Var(β̂) = (X′Σ−1
θ X + λS)−1.

Note that the covariance matrix of β̂ from the posterior is the same as what we got from
the information matrix.

Now we have the covariance matrix of ĝ which is given by

Var(ĝ) = XVar(β̂)X′ = X(X′Σ−1
θ X + λS)−1X′,

and thus can construct confidence intervals for the smooth function.
If there are more than two smooth functions in the model, corresponding submatrix of

X, subset of β̂ and submatrix of Var(β̂) can be used to estimate each component smooth
function and construct confidence intervals for each of them. Note that for the model to be
identifiable, the model matrix and the estimated coefficients for an additive model are for
the centered smooth functions, which means each of the estimated smooth functions sums
up to zero across the data.

4. Asymptotic Posterior Normality

As described in the previous section, given a fixed set of basis functions, model (1) can be
rewritten as

Yt = Xtβ + et, , t = 1, 2, 3, · · · , T, (4)

and the corresponding penalized log likelihood is

`P = −T · n0

2
log(2π)− T

2
log |Σθ| − 1

2

T∑
t=1

(Yt −Xtβ)′Σ−1
θ (Yt −Xtβ)− 1

2
β′Sβ.

Note that the smoothing parameters have been absorbed into the matrix S.
For fixed smoothing parameters, the maximum penalized likelihood estimator can be

interpreted as the posterior mode under a suitable prior density. Specifically, the prior
density of β equals

p(β) =
|D+|1/2

(2π)m/2
exp{−1

2
β′Sβ}

where m is the number of strictly positive eigenvalues of S and D+ is the diagonal matrix
with all those strictly positive eigenvalues of S arranged in descending order on the leading
diagonal. The parameter θ has a flat prior over its parameter space Θ and is independent
of β. Then the joint prior density of β and θ is given by

p(β,θ) =
|D+|1/2

(2π)m/2
exp{−1

2
β′Sβ}. (5)

Hence the posterior density equals

p(β, θ|data) = p(β, θ)p(Y|β, θ)/
∫

p(Y|β, θ)p(β, θ)dβdθ

=
|D+|1/2 exp{− 1

2

∑T
t=1(Yt −Xtβ)′Σ−1

θ (Yt −Xtβ)− 1
2β′Sβ}

(2π)(m+T ·n0)/2|Σθ|T/2
∫

p(Y|β, θ)p(β, θ)dβdθ
(6)

which is exactly the same as the penalized likelihood up to a normalization constant. Note
that the analysis in this section is also conditional on the design matrix X although it is not
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explicitly stated. Sweeting (1992) studied the asymptotic behavior of the posterior density
under the true model. He showed that under suitable regularity conditions, the posterior
density is asymptotically normal. Thus, we may study the large-sample properties of the
penalized estimation via the asymptotic posterior normality framework of Sweeting (1992).

Below, we state a theorem on the asymptotic posterior normality for GAMs under the
spatio-temporal setting with fixed spatial design and temporally independent data. The
proof is deferred to an appendix.
Theorem 1 Consider the spatio-temporal model (4) with fixed spatial design and
temporally independent data. Let φ0 = (β0,θ0) ∈ Φ = Rk × Θ be the true parameter
value, where Θ is a relatively compact, open convex subset of Rl. Suppose the prior of
φ = (β,θ) ∈ Φ is defined by (5), the covariogram function K(·|θ) is twice differentiable
w.r.t. θ, and the covariance matrix Σθ is invertible and continuous over Θ. Furthermore,
assume the following conditions are satisfied:

(A1) for fφ(Yt) = −∂2l(φ|Yt)

∂φφ′ , ∃ δ0 > 0 and a finite, integrable function M(Yt) such

that sup|φ−φ0|<δ0
‖fφ(Yt)‖max ≤ M(Yt) where ‖ · ‖max is the maximum norm;

(A2) for fθ(et) =
(

∂
∂θ′

X
′
tΣ

−1
θ

)
et, ∃ δ1 > 0 and a finite, integrable functions M1(et)

such that sup|θ−θ0|<δ1
‖fθ(et)‖max ≤ M1(et);

(A3) 1
T

∑T
t=1

∂
∂θX

′
tΣ

−1
θ Xt is bounded, uniformly for θ ∈ Θ in probability;

(A4) over the closure of Θ, − 1
T

∂2l(φ)

∂θ∂θ′
is positive definite and a continuous function a.s.;

(A5) infθ∈Θ λmin( 1
T

∑T
t=1 X

′
tΣ

−1
θ Xt) > 0 a.s., where λmin(A) denotes the minimum

eigenvalue of a symmetric matrix A.
Then there exists a sequence of local maxima of the posterior density defined by (6)

around φ0 such that the posterior density of (J1/2
T )′(φ − φ̂T ) converges in probability to

the standard multivariate normal distribution, where J1/2
T is the left Cholesky square root

of JT =
[

JT (β̂) 0
0 JT (θ̂)

]
with the diagonal blocks JT (β̂) =

∑T
t=1 XtΣ−1

θ̂
Xt + S and

JT (θ̂) = −∂2l(φ)

∂θ∂θ′
∣∣∣
β=

ˆβ,θ=
ˆθ
.

Several remarks are in order. Note that this theorem implies that the penalized likelihood
function asymptotically approaches the normal density with mean φ̂T and variance matrix
J−1

T . Recall that in Section 3, the variance matrix of θ̂ is given by the inverse negative
Hessian matrix w.r.t. θ and the variance matrix of β̂ is given by the posterior variance
(X′Σ−1

θ̂
X + S)−1 which is also the inverse negative Hessian matrix w.r.t. β. Therefore,

this theorem provides a justification, in the case of spatio-temporal model, of the way that
the confidence intervals of β and θ are constructed in Section 3, whose extension to the
spatio-temporal model is straightforward.

5. Simulation Study

Now, we investigate the empirical performance of the penalized likelihood estimation from
the spatio-temporal data through a simulation study. The data are simulated from the
following model

Yt(x, y) = f1(x) + f2(y) + bt(x, y) + et(x, y), t = 1, 2, · · · , T
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where x ∈ [0, 1] and y ∈ [0, 1] are the coordinates of a data point; f1(x) = 2 sin(πx);
f2(y) = e2y − 3.75; bt are the spatially correlated errors with distribution N(0,Σ); and et

are the pure measurement errors (or nugget effect) with distribution N(0, ηI).
Since we are particularly interested in the Matérn model, the covariance function for bt

is set to be

K(h) = σ2 (h/φ)ν

2ν−1Γ(ν)
Kν(h/φ),

where h is the distance between two data points, σ2 is the variance parameter, ν is the
smoothness parameter, and φ is the range parameter.

However, we found in practice that this paramerization of the Matérn model is not
very stable and can often result in numerical failures during the numerical optimization
procedure. It turns out the following parametrization performs much better numerically

K(h) = σ2
( h

νρ )ν

2ν−1Γ(ν)
Kν(

h

νρ
),

where ρ = φ/ν. From now on, we will stick to this new parameterization of the Matérn
model. So the parameters of interest here are θ = (σ2, ν, ρ, η)′.

The random fields bt are independently simulated on the same set of locations and
from the same normal distribution N(0, Σ) where Σ is defined by the Matérn covariogram
with σ2 = 1, ν = 2, ρ = 0.045. The measurement errors et are simulated from the
normal distribution N(0, ηI) where η = 0.1. There are 100 locations such that the total
sample size is 100×T . The fitting results, which are based on 1000 replicates for T = 1,
500 for T = 5 and 200 for T = 10, are shown in Tables 1 and 2. As extremely large
or extremely small estimates can be produced in estimating the covariance parameters, in
addition to the sample mean and sample standard deviation we also include the median and
a more robust standard deviation sd∗ to provide a more robust summary of the simulation
results. Let IQR denote the interquartile range. Then the robust standard deviation is
given by sd∗=IQR/1.349, which estimates the standard deviation if the data are normally
distributed. To evaluate the estimation of the smooth functions, we calculated the mean
square errors of the fitted functions and the 95% confidence interval coverage proportion,
which is the proportion of data points that are covered by their 95% confidence intervals.

Generally speaking, the REML estimation seems to be less stable than ML estimation
in the sense that REML estimation can result in some extreme estimates for the spatial
variance σ2 and the range parameter ρ especially when the sample is not very large. On the
other hand, the REML estimation tends to be less biased than the method ML. Also, the
95% CI coverage proportions from the REML estimation are uniformly higher and closer
to the nominal level than those from the ML estimation. As the sample size increases,
both the REML and ML estimation perform better with less bias and smaller variation. In
order to see the loss when the spatial correlation is ignored, we also include in Table 2 (the
last two columns) the 95% CI coverage and MSE for the GAM assuming the same mean
structure but with independent errors. It is clear that the 95% CI coverage proportions are
much lower while the MSEs are slightly larger than the cases where the spatial correlation
is explicitly modeled.

Note that the smoothing parameters are estimated by minimizing the GCV score, al-
though we have assumed fixed smoothing parameters in the theoretical analysis. Still, the
simulation results are generally consistent with the theoretical findings. By comparing the
spatio-temporal cases and the one time period cases, we can see clear advantages gained
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Table 1. Covariance Parameter Estimation
ML REML

Sample True Value mean median sd sd* mean median sd sd*

σ2=1 0.520 0.477 0.229 0.208 34.88 0.991 291.7 0.772
100×1 υ = 2 4.349 4.118 2.606 2.222 3.087 2.555 2.453 2.510

ρ = 0.045 0.028 0.010 0.056 0.012 10.19 0.028 125.1 0.115
η = 0.1 0.090 0.092 0.036 0.032 0.088 0.091 0.038 0.034

σ2=1 0.581 0.527 0.251 0.208 9.266 0.947 137.8 0.572
400×1 υ = 2 3.200 3.023 1.459 1.318 2.302 2.075 1.123 1.083

ρ = 0.045 0.027 0.017 0.028 0.014 4.315 0.042 108.0 0.050
η = 0.1 0.101 0.101 0.010 0.010 0.099 0.100 0.011 0.011

σ2=1 0.903 0.900 0.155 0.146 1.002 0.999 0.176 0.169
100×5 υ = 2 2.358 2.165 0.900 1.006 2.210 2.020 0.849 0.931

ρ = 0.045 0.046 0.038 0.032 0.028 0.053 0.044 0.036 0.032
η = 0.1 0.099 0.100 0.015 0.014 0.099 0.099 0.015 0.015

σ2=1 0.949 0.951 0.106 0.112 1.000 1.004 0.113 0.123
100×10 υ = 2 2.174 2.137 0.590 0.512 2.117 2.081 0.576 0.506

ρ = 0.045 0.046 0.040 0.026 0.018 0.049 0.043 0.027 0.019
η = 0.1 0.100 0.100 0.011 0.010 0.099 0.100 0.011 0.009

Table 2. Smooth Function Estimation
ML REML GAM

95% CI 95% CI 95% CI
Sample Function Coverage MSE Coverage MSE Coverage MSE

f1 + f2 75.25 0.456 89.45 0.601 43.61 0.582
100×1 f1 79.12 0.154 88.72 0.167 48.26 0.215

f2 76.32 0.156 86.69 0.165 47.56 0.221

f1 + f2 78.42 0.406 90.63 0.435 26.91 0.574
400×1 f1 81.69 0.133 90.35 0.139 29.08 0.216

f2 79.26 0.138 87.97 0.140 29.39 0.220

f1 + f2 91.94 0.095 93.40 0.096 55.52 0.112
100×5 f1 92.09 0.034 93.02 0.035 62.04 0.040

f2 92.92 0.032 93.99 0.032 60.91 0.042

f1 + f2 93.58 0.050 94.23 0.050 57.09 0.056
100×10 f1 92.40 0.019 92.90 0.019 63.33 0.022

f2 95.66 0.015 96.09 0.015 67.61 0.019
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from repeated measurements in terms of reduction in both bias and variation in the esti-
mation of covariance parameters, although part of the improvement is due to the larger
total sample size. In particular, the REML estimation is much more stable and the bias
problem bothering the ML estimation is not that problematic now. As for the estimation of
smooth functions, there is substantial improvement in the 95% CI coverage proportions, es-
pecially for the ML estimation, while the mean squared prediction errors are much smaller.
Also note that the results from REML and ML methods tend to be more and more similar
as there are more repeated measurements, although for small to moderately large sample
size, the REML method has, generally, less bias and coverage closer to the 95% nominal
level than the ML method. All these results imply that the GAM with Matérn correlation
structure is much more tractable in the spatio-temporal case than the one time period case.

6. Checking Temporal Independence

So far, we have assumed that the data are temporally independent. Next, we propose an
approach to check the validity of this assumption.

Again, consider the spatio-temporal model (1) with fixed spatial design. Let s1, s2, . . . , sn0

be the spatial locations and et(s) be the error term at location s and time t. Define
ēt ≡ 1

n0

∑sn0
s=s1

et(s). Then

Cov(ēt1 , ēt2)

=
1
n2

0

Cov(
sn0∑

u=s1

et1(u),
sn0∑

v=s1

et2(v))

=
1
n2

0

sn0∑
u=s1

sn0∑
v=s1

Cov(et1(u), et2(v))

=
1
n2

0

sn0∑
u=s1

sn0∑
v=s1

τ(|t1 − t2|)K(|u− v|)

= τ(|t1 − t2|)
∑sn0

u=s1

∑sn0
v=s1

K(|u− v|)
n2

0

(7)

Since
∑sn0

u=s1

∑sn0
v=s1 K(|u−v|)
n2

0
is constant over time, Cov(ēt1 , ēt2) retains the temporal correla-

tion structure of the data. Therefore, it is reasonable to check the assumption of indepen-
dence across time by checking if there is autocorrelation among {ε̄t, t = 1, 2, . . . , T}, where
ε̄t is the average residual over all sampling locations at time t.

Note that the above argument is approximately correct even for random spatial design
provided that the number of sites is large and the sites are well spread out. To see this,
suppose s1, s2, . . . , sn0 are iid with density function h(s). Then (7) converges to τ(|t1 −
t2|)

∫ ∫
K(|u− v|)h(u)duh(v)dv as n0 → +∞.
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7. Model Selection

In the Bayesian framework, the best model from the set of candidate models under consid-
eration is the one that has the highest posterior probability

P (Mi|D) =
P (D|Mi)P (Mi)

P (D)

where P (Mi) is the prior probability of the model Mi, D denotes the data, and P (D) =∑
i P (D|Mi)P (Mi) is the normalization constant. P (D|Mi) is the marginal likelihood (also

called the evidence) of the model Mi

P (D|Mi) =
∫

P (D|θ,Mi)P (θ|Mi)dθ

where P (D|θ, Mi) is the likelihood of the parameters under model Mi, and P (θ|Mi) is the
prior probability (density) of θ under model Mi. Given equal prior model probabilities, the
posterior model probability of Mi is proportional to its marginal likelihood P (D|Mi). The
BIC is an approximation of twice the negative log of the marginal likelihood (see Schwarz,
1978).

Typically, the AIC (Akaike, 1973, 1974) and BIC are used for selecting parametric
models. Here for generalized additive models, we propose a model selection criterion based
on the marginal likelihood or evidence E(M) =

∫
P (D|θ, M)P (θ|M)dθ which selects the

model that has the highest posterior probability. We shall treat the penalty as some prior
information. The analysis will be conditional on the estimated smoothing parameters which
are henceforth treated as fixed, known numbers throughout this section. Below, we shall
suppress M from the preceding formula when the model is clear from the context. For
spatially correlated data, the exact marginal likelihood is generally intractable. (It, however,
admits a closed-form solution for the case of independent, Gaussian data). We propose to
use the Laplace approximation (Tierney and Kadane, 1986, MacKay, 1988 and Wong, 1989)
to derive approximate formula for the marginal likelihood.

7.1. GAMs with Correlated Data - ML Estimation
For simplicity, we consider the case of a GAM with spatially correlated data and no repli-
cation; extension to the case of multi-yearly data is straightforward. The model can be
rewritten as

Y = Xβ + e,

where e ∼ N(0,Σθ) and θ ∈ Θ is the vector of the covariance parameters. The penalized
log likelihood equals

−1
2

log |Σθ| −
1
2
(Y −Xβ)′Σ−1

θ (Y −Xβ)− 1
2
β′Sβ.

Note that the smoothing parameters are absorbed into the matrix S. We assume the priors
of β and θ are independent and θ has a flat prior over Θ. Then the joint prior of β and θ
is

p(β, θ) =
|D+|1/2

(2π)m/2
exp{−1

2
β′Sβ}
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where m is the number of strictly positive eigenvalues of S and D+is the diagonal matrix
with all those strictly positive eigenvalues of S arranged in descending order on the leading
diagonal.

The marginal likelihood of the model then equals
∫

p(y|β, θ)p(β,θ)dβdθ

=
1

(2π)(n+m)/2

∫
p∗(β, θ)dβdθ

where p∗(β,θ) = |D+|1/2

|Σθ|1/2 exp{− 1
2 (y −Xβ)′Σ−1

θ (y −Xβ)− 1
2β′Sβ}. Let

`p∗ ≡ log p∗(β,θ) =
1
2

log |D+| − 1
2

log |Σθ| − 1
2
(y −Xβ)′Σ−1

θ (y −Xβ)− 1
2
β′Sβ.

Let

Λ = − ∂2`p∗

∂(β, θ)∂(β,θ)′
|
β=

ˆβ,θ=
ˆθ

=

[
X′Σ−1

θ X + S − ∂

∂θ′
X′Σ−1

θ (y −Xβ)

− ∂

∂θ
(Y −Xβ)′Σ−1

θ X − ∂2`p∗

∂θ∂θ′

]

β=
ˆβ,θ=

ˆθ.

Since E
[

∂

∂θ′
X′Σ−1

θ (y −Xβ)
]

= 0, the off-diagonal blocks of Λ can be approximated by 0

as β̂ is close to the true value.
By Laplace’s method, the marginal likelihood of the model equals

E ≡
∫

p∗(β,θ)dβdθ ≈ p∗(β̂, θ̂)

√
(2π)k+l

|Λ|

=

√
(2π)k+l|D+|
|Σθ̂||Λ|

exp{−1
2
(y −Xβ̂)′Σ−1

θ̂
(y −Xβ̂)− 1

2
β̂
′
Sβ̂}

where k = dim(β) and l = dim(θ). Hence, the log marginal likelihood equals

logE ≈ k + l

2
log(2π) +

1
2

log |D+| − 1
2

log |Σθ̂|

−1
2

log |Λ| − 1
2
(y −Xβ̂)′Σ−1

θ̂
(y −Xβ̂)− 1

2
β̂
′
Sβ̂.

For the case of GAM without spatial correlation, the log marginal likelihood is obtained by
the preceding formula but with Σθ̂ replaced by the identity matrix, ` = 0 and Λ reduced to
its first diagonal block. However, the formula is exact for the independent case.

7.2. GAMs with Correlated Data - REML Estimation
In the previous section, we apply the Laplace method to the (β,θ) parameterization which
generally operates on a very high-dimensional parameter space as the dimension of β is
usually high. A more accurate approximation may be obtained by first integrating out
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β from the posterior density before applying the Laplace approximation. We derive this
alternative approach in this sub-section, and show that the Laplace approximation is equiv-
alently obtained by a second-order Taylor expansion around the REML estimator of θ. We
employ the same prior distribution used in the previous sub-section.

The marginal likelihood of the model equals
∫

p(y|β, θ)p(β, θ)dβdθ

=
1

(2π)(n+m)/2

∫
p∗(θ)dθ

where k = dim(β) and

p∗(θ) =

√
(2π)k|D+|

|Σθ||X′Σ−1
θ X + S| exp{−1

2
y′[Σ−1

θ −Σ−1
θ X(X′Σ−1

θ X + S)−1X′Σ−1
θ ]y}.

Let

`p∗ ≡ log p∗(θ)

=
k

2
log(2π) +

1
2

log |D+| − 1
2

log |Σθ| − 1
2

log |X′Σ−1
θ X + S|

−1
2
y′[Σ−1

θ −Σ−1
θ X(X′Σ−1

θ X + S)−1X′Σ−1
θ ]y},

and

Λ = − ∂2`p∗

∂θ∂θ′
|
θ=

ˆθ
.

By Laplace’s method, the marginal likelihood of the model becomes

E ≡
∫

p∗(θ)dθ ≈ p∗(θ̂)

√
(2π)4

|Λ|

=

√
(2π)k+l|D+|

|Λ||Σθ̂||X′Σ−1

θ̂
X + S| exp{−1

2
y′[Σ−1

θ̂
−Σ−1

θ̂
X(X′Σ−1

θ̂
X + S)−1X′Σ−1

θ̂
]y}

where l = dim(θ). Hence, the log marginal likelihood equals

logE ≈ k + l

2
log(2π) +

1
2

log |D+| − 1
2

log |Σθ̂| −
1
2

log |Λ| − 1
2

log |X′Σ−1

θ̂
X + S|

−1
2
y′[Σ−1

θ̂
−Σ−1

θ̂
X(X′Σ−1

θ̂
X + S)−1X′Σ−1

θ̂
]y.

7.3. Simulation Study
Although the model selection criteria derived in the previous section can be used to compare
nested or non-nested models, we are particularly interested in choosing between GAMs with
and without spatial correlation in this simulation study.

For the spatially correlated GAM, we simulate data from the following model

Y (x, y) = f1(x) + f2(y) + b(x, y) + e(x, y),
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Table 3. Proportion of Times that the Proposed Criterion Selects the True Model
Variance η = 1.1 η = 1.5 η = 2 η = 11

Independent Data P(logE.gam>logE.ml) 0.755 0.830 0.825 0.865
P(logE.gam>logE.reml) 0.790 0.785 0.835 0.865

Nugget η = 0.1 η = 0.5 η = 1 η = 10
Correlated Data P(logE.ml>logE.gam) 0.955 0.682 0.613 0.369

P(logE.reml>logE.gam) 0.964 0.839 0.728 0.352

where x ∈ [0, 1] and y ∈ [0, 1] are the coordinates of a data point; f1(x) = 1 + 2x; f2(y) =
−3y; b is the spatially correlated error with Matérn covariogram with σ2 = 1, ν = 2, ρ =
0.045; and e is the pure measurement error (or nugget effect) from the normal distribution
with mean 0 and variance η where η is varied from 0.1, 0.5, 1 and 10. The sample size is 200.
We also simulated data from the GAM with the same mean structure but with spatially
independent noise, i.e. b is absent but the nugget effect ranges from 1.1, 1.5, 2 and 11 to
match the overall noise variance of the spatially correlated GAM.

To each simulated dataset, we fitted three models: 1) a GAM model assuming inde-
pendent data; 2) a GAM model assuming Matérn-correlated data fitted by ML estimation;
and 3) a GAM model assuming Matérn-correlated data fitted by REML estimation. The
log marginal likelihood is calculated for each case, and let logE.gam, logE.ml and logE.reml
denote the log marginal likelihood respectively for the three models.

The above procedure is repeated 200 times independently. Table 3 displays the relative
frequencies that the criterion of maximum marginal model probability picks the true model,
i.e., logE.gam is greater than logE.ml or logE.reml for the independent data cases and vice
versa for the correlated data cases. When the data are actually independent and we fit a
gam model with spatial correlation, the fitting procedure tends to fail because the Matern
covariogram is non-identifiable. When the estimation of the correlated GAM fails while
that of the independent GAM succeeds, we count the logE.gam as the largest value since
logE.ml and logE.reml are missing.

It can be seen that the proposed criterion works well in picking the correct model for the
independent data. For the correlated data, the criterion also has good chances to select the
true model, especially when the nugget is relatively small comparing to the spatial variance.
As the nugget increases, the proposed criterion has slightly better chances to select the true
model when the data are independent and lower chances to pick the true model when
the data are correlated. This is, however, expected. As the nugget increases, the spatial
correlation is increasingly irrelevant and thus increasingly difficult to be detected. For the
extreme case where the nugget is ten times of the spatial variance, the data are actually
more like independent data and we have only about one third chance of selecting the true
model. Also, it seems the estimation method (ML or REML) has little effect on model
selection when the data are independent, but for correlated data, REML estimation seems
to result in a more powerful model selection criterion.

Next, we extend the simulation to include spatio-temporal data from a GAM with the
same mean structure that are independent across different time periods, but with either
spatially correlated or spatially independent noise within each time period. With fixed
spatial design, temporally independent repeated measurements are taken at each location
such that the total sample size is still 200. Specifically, we simulated data from two cases:
(i) 50 data points over 4 time periods and (ii) 20 data points over 10 time periods. For all
the spatially correlated data, the parameters of the Matérn covariogram are σ2 = 1, ν =



GAMs with Correlated Data 17

Table 4. Proportion of Times that the Proposed Criterion Selects the True Model:
Spatio-Temporal Data

Sample Distribution 200× 1 50× 4 20× 10 200× 2

Independent P(logE.gam>logE.ml) 0.755 0.845 0.865 0.790
Data P(logE.gam>logE.reml) 0.790 0.855 0.835 0.795

Correlated P(logE.ml>logE.gam) 0.955 0.918 0.815 1
Data P(logE.reml>logE.gam) 0.964 0.928 0.793 1

1, ρ = 0.045 with nugget 0.1. For the spatially independent data, the error variance is
1.1. As we mentioned in Section 5, the smoothing parameters are estimated by minimizing
the GCV score, although we have assumed fixed smoothing parameters in the theoretical
analysis.

Table 4 shows the results, which, again, are based on 200 replicates. In general, the
proposed criterion performs well with at least 75% chance of success in picking the correct
model for all the cases studied here. The criterion works particularly well when the data
are correlated. Even for the case with only 20 fixed data sites, the proposed criterion can
select the right model in about 80% of the times. As there are more repeated measurements
with total sample size fixed, the criterion gains power from repeated measurements for the
independent data, but for the spatially correlated data, the performance of the criterion
gets relatively worse. This may be due to two reasons. First, that the data are independent
across time eliminates some spatial correlation comparing to the one-period case. Second,
as the sample size per time period decreases, there is some information loss in estimating the
mean structure. Taking these reasons into account, these results are not surprising. In fact,
if we only have 20 data points and one time period, we may even have difficulty in fitting the
GAM model due to the small sample size. The benefit from repeated measurements can be
clearly seen for the correlated data when comparing the 200× 1 and the 200× 2 cases. It is
interesting to note that there is no substantial improvement for the independent data when
adding one more observation at each location. Actually, this observation holds even if the
spatial design is random across year (results unreported). This suggests that the proposed
model selection criterion may not be consistent under the true model of independent GAM.
We conjecture that this inconsistency arises from the fact that the independent covariance
structure is a special case of the Matérn structure and that the Matérn model can mimic
the independent case. Even if the data are actually independent, the Matérn model may fit
the data well with either spatial variance or effective range close to zero. As a result, it is
hard to distinguish the Matérn model from the independent covariance structure when the
data are independent even with a larger total sample size.

8. Case Study

The pollock egg density data were collected during the ichthyoplankton survey of the Alaska
Fisheries Science Center in the Gulf of Alaska. Ciannelli et al. (2007) studied the pheno-
logical and geographical patterns of walleye pollock spawning in the western Gulf of Alaska
based on the spatial and temporal distribution of pollock eggs. They fitted a threshold
generalized additive model (TGAM) to the data from 1972 to 2000 (before 1981, only data
from 1972, 1978 and 1979 are available), and found that there was a shift of egg abundance
distribution at the end of 1980s. However, in their analysis they did not take the spatial
correlation into account. As shown by simulations in Section 5, the inference may be invalid
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Fig. 1. Diagnosis of the Fitted Residuals from GAM

if there does exist spatial correlation, but it is ignored in the model. For our purpose of
illustration, we only focus on the data before 1990 so as to avoid the shift and at the same
time keep more years of data.

The response variable here is the pollock egg density which is defined as the average
number of eggs per 10 square meters. The explanatory variables of interest include the
sampling position defined by longitude and latitude, the bottom depth in meters, and the
Julian day of sampling. Samples with zero density or missing values in any variable were
removed and there were 2093 data points left for the analysis. The log transformation was
conducted on the response variable to normalize the distribution and reduce heteroscedas-
ticity. Bottom depth was also log-transformed to allow a uniform distribution throughout
the sampled depth range. The longitude and latitude are in degrees. In order to make it
easier to interpret the distance, the locations are transformed into the Universal Transverse
Mercator (UTM) coordinate system in kilometers, i.e. distance between sampling sites are
measured in terms of geodesic distance.

In modeling the mean structure, an intercept term is added for each year, in addition to
all the predictor variables: position (longitude, latitude), bottom depth, and Julian day of
sampling. We assume that data from different years are independent after the year effect
has been accounted for. Specifically, let Yt(x, y) be the natural logarithm of egg density at
UTM location (x, y) in year t. Then the proposed model can be written as follows.

Yt(x, y) = YEARt + f1(x, y) + f2(DEPTH(x,y)) + f3(DATE) + bt(x, y) + et(x, y),

where YEARt is the intercept allowed to change from year to year, DEPTH(x,y) is the
log-transformed bottom depth at location (x, y), and DATE is the Julian day of sampling.
bt are the spatially correlated errors with distribution N(0,Σ), and et are the independent
measurement errors with distribution N(0, ηI).

First, a GAM assuming (spatially and temporally) independent errors is fitted (i.e.,
bt(x, y) is ignored) . Figure 1 shows the diagnosis plots of the fitted residuals. The vari-
ogam indicates that there might be spatial correlation among the residuals, although the
correlation may not be very strong. The normal Q-Q plot also implies that the distribution
of the fitted residuals is not iid normal. Thus a GAM with independent errors seems to be
inadequate for the pollock egg data.

Then we fit a GAM with spatially correlated, but temporally uncorrelated errors by both
ML and REML estimation. We employed the Matérn covariogram for modeling the spatial
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Table 5. Estimated Covariance Parameters
Method σ̂2 ν̂ ρ̂ η̂

ML 0.488 6.141 1.313 1.337
(0.081) (8.620) (2.897) (0.049)

REML 0.755 2.181 8.984 1.338
(0.142) (1.361) (9.983) (0.050)

Table 6. p-Values of Ljung-Box Test for Temporal Indepen-
dence
Method lag 1 lag 2 lag3 lag 4 lag 5 lag 6

ML 0.201 0.264 0.159 0.174 0.234 0.328
REML 0.254 0.312 0.188 0.183 0.274 0.384

correlation. The results are shown in Figures 2 and 3. The variograms and the normal
Q-Q plots show that the standardized residuals are approximately iid normal, which means
that the Matérn covariogram has adequately explained almost all the spatial correlation.
There is not much difference in the estimated smooth functions between the ML and REML
estimation methods. All the smooth terms are highly significant. In general the pollock egg
density tends to increase as the bottom depth increases. Also, there were less pollock eggs
on early and late sampling days. Besides the seasonal effect, this may be an artifact due
to the traveling route of the cruises. The estimated smooth functions are similar to those
obtained from the function fit in Ciannelli et al. (2007) that assumes no spatial correlation.
However, the confidence bands of the estimated functions are wider than what Ciannelli
et al. (2007) got, which may indicate that the covariance matrix of the regression coeffi-
cients is underestimated due to ignoring the spatial correlation. The estimated covariance
parameters are summarized in Table 5. The variogram estimated from REML has larger
spatial variance and larger effective range, which is consistent with what is already seen in
the simulation study.

For the three models mentioned above, the log marginal likelihoods for the three models
are respectively log E.gam = −1685.999, log E.ml = −1614.990, log E.reml = −1605.928,
which indicates that the models with spatial correlation are preferred and the REML esti-
mation is slightly better then the ML estimation.

So far, we have assumed temporal independence. To check this assumption, the Ljung-
Box test (Ljung and Box, 1978) is used to test for independence in spatially averaged
residuals. The Ljung-Box test statistic is calculated as Q = T (T +2)

∑s
k=1 r2

k/(T−k), where
T is the number of observations, s is the number of coefficients to test for autocorrelation,
and rk is the autocorrelation coefficient (for lag k). If the sample value of Q exceeds the
critical value of a chi-square distribution with s degrees of freedom, then at least one value of
rk is statistically different from zero at the specified significance level. The Null Hypothesis
is that none of the autocorrelation coefficients up to lag s are different from zero. Table 6
lists the test p-values for different maximum lag values. All the p-values are greater than
0.15, implying that the null hypothesis of independence in the spatially averaged residuals
is not rejected at the significance level of 0.05. Thus it is reasonable to assume that the
pollock egg data are independent across years.
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Fig. 2. Estimated Smooth Functions
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Fig. 3. Diagnosis on Residuals

9. Conclusion and Discussion

In this paper, we developed a new approach to fit the (generalized) additive models with
correlated data under the GAM framework, as an alternative to the GAMM framework
which turns out to have some numerical problems. Meanwhile, we also studied the prop-
erties of the Matérn correlation model under the GAM framework. In general, the REML
estimation tends to be better than ML in terms of bias and confidence interval coverage for
the smooth functions, but the ML estimation of the covariance parameters is more stable.
However, it can be expected that the two methods tend to perform similarly as the sample
size is large enough. The variations of the estimates sometimes seem to be large, but this
is not surprising since many authors have reported the difficulties in likelihood estimation
of covariance parameters (Mardia and Watkins, 1989; Diggle et al., 1998; Zhang, 2002).

As some of the parameters of the Matérn model can not be consistently estimated under
fixed domain asymptotics, we investigated the spatio-temporal case where the spatial design
is assumed to be fixed with temporally independent repeated measurements and the spatial
correlation structure does not change over time, and outlined the conditions under which
the asymptotic posterior normality holds. Although it is hard to verify if those conditions
are satisfied for the Matérn model, simulation study indicates that this may be the case.

We have been focusing on the Gaussian type data, i.e., the additive models, in this
paper. It is of interest to make the methodology workable for all GAMs with correlated
data. Also, all the inference has assumed fixed smoothing parameters. It would be nice to
incorporate the randomness of the smoothing parameters.



22 X. Fang and K.-S. Chan

References

[1] Abe, M. (1999). A Generalized Additive Model for Discrete-Choice Data. Journal of
Business & Economic Statistics 17(3), 271-284.

[2] Abramowitz, M. and Stegun, I.A. (1972). Modified Bessel Functions I and K. Hand-
book of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th
printing. New York: Dover, 374-377.

[3] Akaike, H. (1973). Information theory and an extension of the maximum likelihood
principle. In B.N. Petrov and F. Csake (eds.), Second International Symposium on Infor-
mation Theory. Budapest: Akademiai Kiado, 267-281.

[4] Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions
on Automatic Control AC-19, 716-723.

[5] Akaike, H. (1978a). A new look at the Bayes procedure. Biometrika 65, 53-59.

[6] Bai, Z. D., Krishnaiah, P. R., Sambamoorthi, N., and Zhao, L. C. (1992) Model selection
for log-linear model. Sankhya B 54, 200-219.

[7] Bozdogan, H. (1987). Model-selection and Akaike’s information criterion (AIC): The
general theory and its analytical extensions. Psychometrika 52, 345-370.

[8] Chen, C.-F. (1985). On Asymptotic Normality of Limiting Density Functions with
Bayesian Implications. Journal of the Royal Statistical Society. Series B (Methodolog-
ical) 47(3), 540-546.

[9] Ciannelli, L., Bailey, K. M., Chan, K.-S., and Stenseth, N. C. (2007). Phenological
and geographical patterns of walleye pollock (Theragra chalcogramma) spawning in the
western Gulf of Alaska. Canadian Journal of Fisheries and Aquatic Sciences 64, 713-722.

[10] Corbeil, R.R. and Searle, S.R. (1976). Restricted Maximum Likelihood (REML) Esti-
mation of Variance Components in the Mixed Model. Technometrics 18(1), 31-38.

[11] Diggle, P.J., Tawn, J.A. and Moyeed, R.A. (1998). Model-Based Geostatistics. Journal
of the Royal Statistical society, Series C 47, 299-350.

[12] Diggle, P. J., Ribeiro, P. J. and Christensen, O. F. (2002). An Introduction to Model-
Based Geostatistics. Spatial Statistics and Computational Methods, ed. J. Møller. New
York: Springer-Verlag, 43-86.

[13] Dominici1, F., McDermott1, A., Zeger, S.L. and Samet, J.M. (2002). On the Use of
Generalized Additive Models in Time-Series Studies of Air Pollution and Health. Amer-
ican Journal of Epidemiology 156(3), 193-203.

[14] Fahrmeir, L., Kneib, T. and Lang, S. (2004). Penalized additive regression for space-
time data: a Bayesian perspective. Statistica Sinica 14, 731-761.

[15] Fahrmeir, L. and Lang, S. (2001). Bayesian Inference for Generalized Additive Mixed
Models based on Markov Random Field Priors. Journal of the Royal Statistical Society
C 50, 201-220.



GAMs with Correlated Data 23

[16] Frescino, T.S., Edwards, T.C. and Moisen, G.G. (2001). Modeling Spatially Explicit
Forest Structural Attributes Using Generalized Additive Models. Journal of Vegetation
Science 12(1), 15-26.

[17] Green, P.J. and Silverman, B.W. (1994). Nonparametric Regression and Generalized
Linear Models: A Roughness Penalty Approach. London: Chapman & Hall.

[18] Gu, C. (2002). Smoothing Spline ANOVA Models. New York: Springer-Verlag.

[19] Guisan, A., Edwards, T.C. and Hastie, T.J. (2002). Generalized Linear and General-
ized Additive Models in Studies of Species Distributions: Setting the Scene. Ecological
Modelling 157(2-3), 89-100.

[20] Hastie, T.J. and Tibshirani, R.J. (1986). Generalized Additive Models. Statistical Sci-
ence 1, 297-318.

[21] Hastie, T.J. and Tibshirani, R.J. (1990). Generalized Additive Models. New York:
Chapman & Hall/CRC.

[22] Hastie, T.J. and Tibshirani, R.J. (1995). Generalized Additive Models for Medical
Research. Statistical Methods in Medical Research 4(3), 187-196.

[23] Heyde, C. C. and Johnstone, I. M. (1979). On Asymptotic Posterior Normality for
Stochastic Processes. Journal of the Royal Statistical Society. Series B (Methodological)
41(2), 184-189.

[24] Hurvich, C. M. and Tsai, C-L. (1991). Bias of the corrected AIC criterion for underfitted
regression and time series models. Biometrika 78, 499-509.

[25] Lehmann, A. (1998). GIS Modeling of Submerged Macrophyte Distribution Using Gen-
eralized Additive Models. Plant Ecology 139(1), 113-124.

[26] Lin, X. and Zhang, D. (1999). Inference in Generalized Additive Mixed Models by
Using Smoothing Splines. Journal of Royal Statistical Society: Series B 61, 381-400.

[27] Ljung, G. M. and Box, G. E. P. (1978). On a measure of lack of fit in time series
models. Biometrika 65, 553C564.

[28] MacKay, D. J. C. (1998). Choice of basis for Laplace approximation. Machine Learning
33(1), 77-86.

[29] Mardia, K. V. and Watkins, A. J. (1989). On multimodality of the likelihood in the
spatial linear model. Biometrika 76, 289-295.

[30] Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics.
6(2), 461-464.

[31] Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. New York:
Springer-Verlag.

[32] Sweeting, T. J. (1992). On Asymptotic Posterior Normality in the Multiparameter
Case. Bayesian Statistics. 4, 825-835.



24 X. Fang and K.-S. Chan

[33] Sweeting, T. J. and Adekola, A. O. (1987). Asymptotic Posterior Normality for Stochas-
tic Processes Revisited. Journal of the Royal Statistical Society. Series B (Methodological)
49(2), 215-222.

[34] Tierney, L. and Kadane, J. B. (1986). Accurate Approximations for Posterior Moments
and Marginal Densities. Journal of the American Statistical Association 81(393), 82-86.

[35] van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press.

[36] Wahba, G. (1990). Spline Models for Observational Data. Philadelphia: SIAM.

[37] Walker, A. M. (1969). On the Asymptotic Behaviour of Posterior Distributions. Journal
of the Royal Statistical Society. Series B (Methodological) 31(1), 80-88.

[38] Williams, B. J., Santner, T.J. and Notz, W.I. (2000). Sequential Design of Computer
Experiments to Minimize Integrated Response Functions. Statistica Sinica 10, 1133-1151.

[39] Wong, R. (1989). Asymptotic Approximations of Integrals. Academic Press, San Diego.

[40] Wood, S. N. (2006). Generalized Additive Models: An Introduction with R. Boca Raton,
Florida: Chapman & Hall/CRC.

[41] Ying, Z., (1991). Asymptotic properties of a maximum likelihood estimator with data
from a Gaussian process. Journal of Multivariate Analysis 36(2),280-296.

[42] Zeger, S.L. and Diggle, P.J. (1994). Semi-parametric Models for Longitudinal Data
with Applications to CD4 Cell Numbers in HIV Seroconverters. Biometrics 50, 689-699.

[43] Zhang, H. (2002). On Estimation and Prediction for Spatial Generalized Linear Mixed
Models. Biometrics 56, 129-136.

[44] Zhang, H. (2004). Inconsistent Estimation and Asymptotically Equal Interpolations in
Model-Based Geostatistics. Journal of American Statistical Association 99, 250-262.

[45] Zhang, D., Lin, X., Raz, J. and Sowers, M. (1998). Semi-parametric Stochastic Mixed
Models for Longitudinal Data. Journal of American Statistical Association 93, 710-719.

[46] Zhu, Z. and Zhang, H. (2006). Spatial Sampling Design under the Infill Asymptotics
Framework. Environmetrics 17, 323-337.



GAMs with Correlated Data 25

Proof of Theorem 1

We begin the proof by restating Sweeting’s results.
Let (ΩT ,AT ) be a family of measurable spaces, where T ∈ T is a discrete or continuous

time parameter. Let xT ∈ ΩT be the observed data up to and including time T . Let
PT

φ be the corresponding probability measures defined on (ΩT ,AT ), where the parameter
φ ∈ Φ, an open subset of Rp. Assume that, for each T ∈ T and φ ∈ Φ, PT

φ is absolutely
continuous with respect to a σ-finite measure µT and let pT (xT |φ) be the associated density
of PT

φ . The log-likelihood function lT (φ) = log pT (xT |φ) is assumed to exist a.e. (µT ). Let
UT (φ) = l

′
T (φ) be the vector of first-order partial derivatives of lT (φ) w.r.t. φ and define

JT (φ) = −l
′′
T (φ), the observed information matrix at φ. Let Mp be the space of all real p×p

matrices and M+
p be the space of all p×p positive definite matrices. Let λmax(A), λmin(A)

denote the maximum and minimum eigenvalues of a symmetric matrix A ∈ Mp. The
spectral norm ‖ · ‖ in Mp is ‖A‖2 = sup(|Ax|2 : |x|2 = 1) = λmax(A′A). The matrix
A1/2 will denote the left Cholesky square root of A in M+

p . Let φ0 be the true underlying

parameter value. Write JT0 = JT (φ0), UT0 = UT (φ0), and WT = B−1/2
T JT0(B

−1/2
T )′

where BT are AT -measurable matrices in M+
p . The matrices BT are chosen such that the

sequence (WT ) is stochastically bounded in M+
p . Let N∗

T (c) =
{

φ : |(B1/2
T )′(φ− φ0)| < c

}

and ∆∗
T (c) = supφ∈N∗

T (c) ‖B
−1/2
T (JT (φ)− JT (φ0))(B

−1/2
T )′‖.

Consider the following conditions:
C1. (Prior distribution) The prior distribution of φ is absolutely continuous with respect

to Lebesgue measure, with prior density π(φ) continuous and positive through Φ and zero
on Φc.

D2. (Smoothness) The log-likelihood function lT (φ) is a.e. (µT ) twice differentiable
with respect to φ throughout Φ.

D3. (Compactness) (B−1/2
T UT0) is stochastically bounded.

D4. (Information growth) B−1
T

p→ 0.
D5. (Information continuity) ∆∗

T (c)
p→ 0 for every c > 0.

D6. (Nonlocal behavior) For each T ∈ T there exists a non-random open convex set
CT containing φ0 which satisfies

(i) PT (JT (φ)) > 0 on CT ) → 1.
(ii) π(φ) is eventually bounded on CT .
(iii) {pT (xT |φ0)}−1|BT |1/2

∫
φ6∈CT

pT (xT |φ)π(φ)dφ
p→ 0.

The following two lemmas of Sweeting (1992) are helpful for checking D6(iii).
Lemma 1 Assume conditions D2 - D6(i) with BT = JT0. Then (i) with probability
tending to one as T →∞, there is a unique solution φ̂T of l

′
T (φ) = 0 in CT at which point

lT (φ) assumes its maximum value over this region; and (ii) (J1/2
T0 )′(φ̂T−φ0) is stochastically

bounded.
Note that the result (ii) of Lemma 5.1 implies that the penalized likelihood estimator of

φ is consistent with 1/
√

T converge rate.
Lemma 2 Assume conditions C1, D2 - D5 and D6(i), (ii). Suppose further that
CT ⊃ C where C is a fixed neighborhood of φ0 and that, with probability tending to
one, supφ∈RT−CT

pT (xT |φ) = supφ∈∂CT
pT (xT |φ), where RT is some non-random neigh-

borhood of φ0 and ∂CT denotes the boundary of CT , i.e., ∂CT = C̄T ∩ Cc
T . Then if
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({λmin(BT )}−1 log λmax(BT )) is stochastically bounded we have

QT ≡ {pT (xT |φ0)}−1|BT |1/2

∫

φ∈RT−CT

pT (xT |φ)π(φ)dφ
p→ 0.

Here is the main result of Sweeting (1992).
Theorem 2 Assume conditions C1, D2 - D6. Then

fT (z|xT ) = |JT |−1/2πT (φ̂T + (J−1/2
T )′z|xT )

p→ (2π)−p/2 exp{−|z|2/2} as T →∞

where fT (z|xT ) is the posterior density of ZT = (J1/2
T )′(φ − φ̂T ), JT = JT (φ̂T ), and

πT (φ|xT ) is the posterior density of φ based on the data up to time T .
The theorem above implies the convergence of the posterior distribution of ZT to the

standard p-dimensional normal distribution. In other words, the posterior of φ is asymp-
totically multivariate normal with mean φ̂T and variance matrix J−1

T .
Now, we are ready to prove Theorem 1 by verifying the conditions of Theorem 2.
C1. The prior of φ, p(φ) = |D+|1/2

(2π)m/2 exp{− 1
2β′Sβ}, which indicates φ has flat prior on

Θ, clearly satisfies C1.
D2. The penalized log-likelihood equals

lT (φ) = −1
2

T∑
t=1

(Yt −Xtβ)′Σ−1
θ (Yt −Xtβ)− T

2
log |Σθ| − 1

2
β′Sβ.

Clearly the log-likelihood is twice differentiable with respect to β. Thus D2 holds as long
as Σθ or the covariogram function K(·|θ) is twice differentiable with respect to θ.

D3. Let BT = T Ik+l. Then WT = 1
T JT0

a.s.→ In0(φ0), where n0 is the sample size
for each time period and In0 is the expected Fisher information for one time period. Thus
(WT ) is stochastically bounded. Since Eφ0 [B

−1/2
T JT0(B

−1/2
T )] = 1

T Eφ0 [JT0] = In0(φ0) and
Eφ0 [JT0] = Eφ0 [UT0U ′T0], then Eφ0 |B−1/2

T UT0|2 = tr(In0(φ0)) and D3 holds.
D4. It is trivial that D4 holds.
Before moving on to D5, we first give a lemma which is from Example 19.8 in van der

Vaart (1998) (p272).
Lemma 3 Let F = {fθ : θ ∈ Θ} be a collection of measurable functions with integrable

envelope function F indexed by a compact metric space Θ such that the map θ 7→ fθ(x) is
continuous for every x. Then F is Donsker and hence the law of large numbers and central
limit theorem hold uniformly in f ranging over F .

D5. ∆∗
T (c) = supφ∈N∗

T (c) ‖ 1
T JT (φ)− 1

T JT (φ0)‖, where

N∗
T (c) =

{
φ : |

√
T (φ− φ0)| < c

}
.

Let fφ(Yt) = −∂2l(φ|Yt)

∂φφ′ . Under the assumption that lT (φ) is twice differentiable, the

map φ 7→ fφ(Yt) is continuous. Suppose ∃ δ0 > 0 and a finite, integrable function M(Yt)
such that sup|φ−φ0|<δ0

‖fφ(Yt)‖max ≤ M(Yt) where ‖ · ‖max is the maximum norm. Then
by Lemma 3, 1

T JT (φ) = 1
T

∑T
t=1 fφ(Yt)

a.s.→ Eφ0fφ(Yt) uniformly as T → +∞. Since
N∗

T (c) → φ0 as T → +∞,

sup
φ∈N∗

T (c)

‖Eφ0fφ(Yt)− Eφ0fφ0(Yt)‖ = sup
φ∈N∗

T (c)

‖Eφ0fφ(Yt)− In0(φ0)‖ → 0.
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Also, as T → +∞, 1
T JT (φ0)

a.s.→ Im(φ0). Thus supφ∈N∗
T (c) ‖ 1

T JT (φ) − 1
T JT (φ0)‖ → 0 as

T → +∞.
D6. (i). Let ε > 0 be a small number to be determined and CT = {β : |β−β0| < ε}×Θ.

It is equivalent to check if 1
T JT (φ) is positive definite on CT .

1
T

JT (φ) =

[
1
T

∑T
t=1 X

′
tΣ

−1
θ Xt + 1

T S − 1
T

∂

∂θ′
∑T

t=1 X′
tΣ

−1
θ (Yt −Xtβ)

− 1
T

∂

∂θ

∑T
t=1(Yt −Xtβ)′Σ−1

θ Xt − 1
T

∂2l(φ)

∂θ∂θ′

]

The off-diagonal block matrix is

1
T

∂

∂θ′

T∑
t=1

X
′
tΣ

−1
θ (Yt −Xtβ)

=
1
T

T∑
t=1

∂

∂θ′
X
′
tΣ

−1
θ (Yt −Xtβ0 + Xtβ0 −XT β)

=
1
T

T∑
t=1

∂

∂θ′
X
′
tΣ

−1
θ (Yt −Xtβ0) +

1
T

T∑
t=1

∂

∂θ′
X
′
tΣ

−1
θ Xt(β0 − β)

=
1
T

T∑
t=1

∂

∂θ′
X
′
tΣ

−1
θ et +

1
T

T∑
t=1

∂

∂θ′
X
′
tΣ

−1
θ Xt(β0 − β).

Let fθ(et) =
(

∂
∂θ′

X
′
tΣ

−1
θ

)
et. Then the map θ 7→ fθ(et) is continuous. Suppose ∃ δ1 > 0

and a finite, integrable functions M1(et) such that sup|θ−θ0|<δ1
‖fθ(et)‖max ≤ M1(et). By

Lemma 3,

1
T

T∑
t=1

∂

∂θ′
X
′
tΣ

−1
θ et =

1
T

T∑
t=1

fθ(et)
a.s.→ Eθ0fθ(et) =

(
∂

∂θ′
X
′
tΣ

−1
θ

)
Eθ0 [et] = 0

uniformly as T → +∞. Therefore, 1
T

∑T
t=1

∂

∂θ′
X
′
tΣ

−1
θ et is op(1). Next, consider when

|β − β0| < ε,

1
T

T∑
t=1

∂

∂θ′
X
′
tΣ

−1
θ Xt(β0 − β)

= |β0 − β| 1
T

T∑
t=1

∂

∂θ
X
′
tΣ

−1
θ Xt

β0 − β

|β0 − β| = |β0 − β|Op(1)

provided that 1
T

∑T
t=1

∂
∂θX

′
tΣ

−1
θ Xt is bounded uniformly in probability.

Thus, the off diagonal blocks are negligible as ε can be chosen to be small enough, if
the two diagonal blocks are positive definite with eigenvalues bounded away from zero over
CT . The preceding condition on the diagonal blocks holds under the assumptions (A4) and
(A5). Of course, Σθ needs to be invertible and continuous over Θ.

(ii) The prior of φ given by (5) is bounded on CT .
(iii) Let RT = Φ and C = CT . BT = JT0 =

∑T
t=1 Jt = T · 1

T

∑T
t=1 Jt → TIm(φ0),

which is equivalent to BT = T Ik+l. Thus by Lemma 1, with probability tending to one as
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T → +∞, there is a unique maximizer of lT (φ) in the open set CT . Then with probabil-
ity tending to one supφ∈RT−CT

pT (YT |φ) = supφ∈∂CT
pT (YT |φ). This can be proved by

contradiction. Suppose supφ∈RT−CT
pT (YT |φ) is obtained at some point inside the open

set RT − C̄T . Then that point would be a local maximizer of lT (φ), which contradicts the
concavity of lT (φ) which can only have one local maximizer over an open, convex param-
eter space. Since ({λmin(BT )}−1 log λmax(BT )) = ( 1

T log(T )) is stochastically bounded, by
Lemma 2 we have

QT ≡ {pT (YT |φ0)}−1|BT |1/2

∫

φ∈RT−CT

pT (YT |φ)π(φ)dφ
p→ 0.

This complete the proof of Theorem 1 which readily follows from Theorem 2.


